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Mean intensity based active control for the cancellation of radiated noise out of the duct
exit is studied. The active intensity control strategy is derived based on the relation of the
exterior sound field radiated out of the duct termination and the interior sound field of the
duct. One of the characteristics of this control strategy is that the maximum possible control
performance can be maintained regardless of the sensor location, compared with the
conventional local pressure control methods at either interior downstream or exterior field
positions. This is a simple consequence of the active intensity at the interior downstream
being not space-dependent as long as it is plane wave. A time-domain adaptive filtering
method for the active intensity control is also suggested and experimental results for an
open ended duct based on the adaptive filtering method are presented. For the purpose of
practical comparison, experimental results for conventional sound pressure control based
on the well known filtered-x LMS algorithm are also presented. The experimental results
show the potential of the active intensity control strategy for reducing the emitted noise
out of the duct exit.
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1. INTRODUCTION

Active noise control for the reduction of duct noise has been widely investigated
theoretically and experimentally with regard to various control strategies: local sound
pressure control, total acoustic potential energy control, downstream potential energy
control, positive-travelling pressure control, total acoustic radiation power control and
acoustic power absorbing control by secondary source [1–9]. Most practical approaches
of these active control strategies has been, over the last decade, based on the modified least
mean square adaptive filtering technique: filtered-x LMS (least-mean-square) algorithm
[10]. These studies mainly treat the interior noise control problems of a duct. However,
there are relatively few studies concerned with the relation between the interior noise
control and the exterior noise out of the duct exit; the latter would be the major concern
in many practical problems such as exhaust noise of a vehicle, or ducted fan noise.

The exterior noise from a duct exit is basically related to the termination condition and
the acoustic power at its exit. The termination condition is inherently dependent on the
geometrical configuration of the duct exit and the acoustic loading condition of the exterior
field, so that it determines an acoustic radiation efficiency. This means that one cannot
change the termination condition by a driving control source; in other words, the active
control system cannot modify the radiation condition of the duct exit. However, it is
noteworthy that the acoustic power at the duct exit can be controlled by a suitable
downstream secondary source.
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The main objective of this paper is to find the most appropriate acoustic measure to
be controlled for having minimum noise from a duct exit. In this paper, the relations
among the external sound pressure of duct, the radiation power out of the duct
termination, sound pressures, and the active and reactive intensities at each downstream
position in the duct are derived to obtain the most adequate cost function actively to be
controlled. It is concluded that the active sound intensity downstream is the most proper
one. A time-domain adaptive filtering method for the active intensity conrol is also
suggested and experimental results for an open ended duct based on the adaptive filtering
method are presented. For the purpose of practical comparison, experimental results for
conventional sound pressure control based on the well known filtered-x LMS algorithm
[10] are also presented.

2. INTERNAL AND EXTERNAL SOUND FIELD OF DUCT

A typical arrangement of the ducted noise problem is illustrated in Figure 1. Without loss
of generality, one can assume that there is one monopole primary source located at xp with
volume velocity qp and a secondary source at xs with qs . The impedances at both ends are
denoted by Zo and Zt (or reflection coefficients, Ro and Rt ). The termination impedance
Zt can be considered as the loading condition upon the outer acoustic field. Only a plane
sound wave in the duct is considered, it being assumed that the wavelengths of interest
are much longer than the characteristic length of the duct cross-section.

The internal sound pressures pu and pd upstream and downstream of the control source
(see Figure 1), can be readily obtained in terms of propagating components p+

u , p+
d and

reflected components p−
u , p−

d . One has

pu (x)= p+
u (qp , qs ) e−jkx + p−

u (qp , qs ) e+jkx, (1a)

pd (x)= p+
d (qp , qs ) e−jkx + p−

d (qp , qs ) e+jkx, (1b)

where

p+
u (qp , qs )=

rc
2S 6Ro ejk(L− xp ) + ejk(L+ xp )

ejkL −RoRt e−jkL qp +
Ro ejk(L− xs ) +RoRt e−jk(L− xs )

ejkL −RoRt e−jkL qs7, (2a)

p−
u (qp , qs )=

rc
2S 6Rt e−jk(L− xp ) +RoRt e−jk(L+ xp )

ejkL −RoRt e−jkL qp +
ejk(L− xs ) +Rt e−jk(L− xs )

ejkL −RoRt e−jkL qs7, (2b)

Figure 1. The internal and external sound field of a duct in which a primary source located at xp with strength
qp and a secondary source at xs with qs . Zo , Ro and Zt , Rt are acoustic impedances at the ends and SL is the
cross-sectional area at x=L. p+

u , p−
u and p+

d , p−
d are the propagating and reflected sound pressures upstream and

downstream, and pe (j) is the sound pressure in the exterior field.
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p+
d (qp , qs )=

rc
2S 6Ro ejk(L− xp ) + ejk(L+ xp )

ejkL −RoRt e−jkL qp +
Ro ejk(L− xs ) + ejk(L− xs )

ejkL −RoRt e−jkL qs7, (2c)

p−
d (qp , qs )=Rt e−2jkLp+

d (qp , qs ) (2d)

The subscripts u, d and S denote upstream, downstream and the cross-sectional area of
the duct respectively.

The Helmholtz integral equation for the external sound field out of the duct termination
is

pe (j� )= jkrc gSL

u(j� L )Ge (j� = j� L ) dSL , (3)

where u(j� L ) and SL are the particle velocity and the cross-section area at the duct exit,
respectively. The Green function Ge satisfies the homogeneous Neumann boundary
condition, that is 1Ge /1n=0 for all surfaces surrounding the duct structure. Since a plane
wave field in the duct has been assumed, the velocity u(j� L ) is uniform (uL ) over the duct
exit area so equation (3) can be rewritten as

pe (j� )= jkrcuL gSL

Ge (j� = j� L ) dSL =jkpL
1−Rt

1+Rt gSL

Ge (j� = j� L ) dSL (4)

where pL is the sound pressure at the duct exit. Thus one has expressions for internal and
external sound fields, respectively, equations (1) and (4), in terms of the variables
associated with a finite length duct.

3. ACTIVE CONTROL OF EXTERNAL SOUND FIELD

The acoustic potential energy at each external position (epe (j� )) can be obtained from
equation (4) as

epe (j� )=
1

4rc2 =pe (j� )=2 = k2/4rc2 =pL =2 b 1−Rt

1+Rt b
2

bgSL

Ge (j� = j� L ) dSL b
2

. (5)

From equations (1b), (2c) and (2d), the sound pressure at the duct exit is obtained as

pL = pd (L)= p+
d e−jkL + p−

d e+jkL = p+
d (1+Rt ) e−jkL. (6)

Substitution of equation (6) into equation (5) gives

epe (j� )=D(j� )=p+
d =2, (7a)

where

D(j� )= k2/4rc2 =1−Rt =2 b gSL

Ge (j� = j� L ) dSL b
2

. (7b)

Equation (7) essentially says that the acoustic potential energy density at exterior field is
basically related to the propagating wave energy (=p+

d =2) at the interior downstream and it
is shaped by the space-dependent factor (D(j� )); that is, the ‘‘directivity pattern’’ that is
related to the geometrical configuration of the duct exit and the exterior field condition.
This result does not, of course, violate general common sense.
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Keeping this fact in mind, one can now consider the downstream acoustic field from
the secondary source. The acoustic potential energy density at each downstream position
(epd ), can be readily obtained from equations (1b), (2c) and (2d) as a form of
space-dependent shape function (F1) which represents the ‘‘standing wave pattern’’ of
propagating wave energy (=p+

d =2).

epd (x)= (1/4rc2)=pd (x)=2 = (1/4rc2)=1+Rt e−2jk(L− x)=2=p+
d =2 0F1(x)=p+

d =2. (8)

The mean active sound intensity (Iad ) and the reactive sound intensity (Ird ) in the
downstream field can be expressed as

Iad (x)= 1
2 Re [ pd (x)u*d (x)], Ird (x)= 1

2 Im [ pd (x)u*d (x)], (9a, b)

where the particle velocity downstream (ud ) can be obtained from the pressure gradient
by using the relation (or Euler equation)

ud (x)=−(1/jkrc) dpd (x)/dx. (10)

Substitutions of equations (1), (2) and (10) into equation (9) and appropriate
rearrangements yield

Iad (x)= (1/2rc)(=p+
d =2 − =p−

d =2)= (1/2rc)(1− =Rt =2)=p+
d =2 0C1=p+

d =2, (11a)

Ird (x)= (1/rc) Im [Rt e−2jk(L− x)]=p+
d =2 0F2(x)=p+

d =2. (11b)

One can see from equations (11a) that the active intensity in the duct downstream is the
product of the space-independent modulus (C1) and propagating wave energy, and the
active intensity is always non-negative since the magnitude of the reflection coefficient (=Rt =)
cannot be greater than unity. The reactive intensity (Ird ) is also expressed as proportional
to propagating wave energy but it is shaped by the space-dependent function (F2(x)).

The acoustic radiation power out of the termination (Wr ) is also basically related to the
propagating wave component in the downstream,

Wr =gSL

Iad (L) dSL =SLC1=p+
d =2. (12)

It is noteworthy that all the above acoustic quantities are related to the propagating wave
component downstream, which can be controlled by the secondary source. Therefore one
can conclude that, downstream, acoustic potential energy density control and active or
reactive intensity control and radiation power control out of the termination have the same
effect on controlling the exterior sound field, even if the acoustical control measures are
different.

It is also interesting to note that the active intensity is not space-dependent, as indicated
by equation (11a). This characteristic has an important implication for practical
applications: that is, intensity control can prevail against the poor observability problem
that often happens and degrades the control performance in the conventional, local sound
pressure control configuration which uses a pressure transducer. This fact will be
investigated in more detail in terms of real-time experiments of active intensity control and
sound pressure control in section 5.

The optimal control source (qso ) for the minimization of the active intensity in the
interior downstream can be readily obtained from equations (11a) and (2c). It is
noteworthy that the minimization of the active intensity with respect to the control source
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strength does not necessarily require one to know the constant C1 in equation (11a) since
it is not dependent on the control source strength (qs ):

qso (v)=−
ejvxp /c +Ro (v) e−jvxp /c

ejvxs /c +Ro (v) e−jvxs /c
qp (v). (13)

In equation (13), one can see that the optimal source strength is related to the two
source positions xp and xs and to the upstream reflection coefficient Ro , but is not
dependent on the downstream termination condition. If one takes the inverse Fourier
transform of equation (13) and uses the binomial expansion theorem (1+x)−1 =
1− x+ x2 − x3 + · · · , then the form of the optimal control source strength in the time
domain becomes

qso (t)= s
a

i=1

aiqp (t− ti ), ti q 0. (14)

Equation (14) simply states that the optimal source strength is the sum of delayed versions
of the primary source strength. That is, the optimal controller can be designed by a causal
transversal filter.

4. ADAPTIVE FILTERING FOR ACTIVE INTENSITY CONTROL

To implement practically the active intensity control in a duct, the adaptive filtering
algorithm in time domain, developed by Hald [11] can be used. The algorithm had been
developed originally to implement the active power absorbing strategy by the control
source for a general acoustic system. Therefore one could suspect that the algorithm
could have potential difficulty for the present purpose, because the active intensity is not
positive definite in general. However, the active intensity in the duct downstream from the
control source is always non-negative as previously stated in section 3. Therefore, one can
apply the adaptive filtering algorithm to implement the current active intensity control
strategy.

Another possible method of implementing the active intensity control would be the
frequency-domain filtered-x algorithm in which one considers the imaginary part of
the cross-spectrum of the two pressure measurements scaled by rDrv, where r is the
medium’s density, Dr is the separation distance and v is the angular frequency (that
is, the active part of the sound intensity in the frequency domain) as a cost function. In
recent investigation [12], the adaptive filtering algorithm in the frequency domain to
implement the active intensity control strategy has been suggested. The ultimate aim of
the algorithm was to control actively an enclosure sound field in which strong standing
waves exist.

The above algorithms require a lengthy data averaging process and a finite-length DFT
(or FFT) process respectively, which cause computational complexities in real-time
control. Thus the authors have attempted to find another adaptive algorithm which is far
simpler in computation. The formulation of the adaptive filtering law is similar to the
active sound power absorbing algorithm [11] and sound energy density control algorithm
[13]; however, the applicability and stability of the adaptive structure based on the
instantaneous sound intensity for the mean (active) sound intensity control is investigated,
since it is very simple in computation.

In Figure 2 is shown the block diagram of time-domain adaptive algorithm for active
intensity control. Assuming stochastic process of zero mean, one can first define the
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Figure 2. A block diagram of the filtered-x LMP (least-mean-product) algorithm (equation (38)) for controlling
active sound intensity in the duct. w denotes the adaptive control filter, while hp and hu represent auxiliary plants
relating the control output y(n) to the acoustic pressure pe (n) and particle velocity ue (n) at the error position.
h
 p and h
 u denote the estimated copies of the auxiliary plants hp and hu respectively.

reference input vector x(n) at the discrete time step n, constructed with the latest L
successive samples of the signal x(n),

x(n)= [x(n) x(n−1) · · · x(n−L+1)]T, (15)

and w(n), the adaptive transversal filter with L tap weights,

w(n)= [wo (n) w1(n) · · · wL−1(n)]T. (16)

With these notations, the filter output is

y(n)=wT(n)x(n). (17)

The sound pressure pe (n) and particle velocity ue (n) at the error sensor can be expressed
as

pe (n)= po (n)+ hT
p (n)y(n), ue (n)= uo (n)+ hT

u (n)y(n), (18a, b)

where hp (n) and hu (n) represent the vectors containing the first N samples of impulse
responses of auxiliary plants relating the filter output y(n) to the pressure pe (n) and velocity
ue (n),

hp (n)= [hp,0(n) hp,1(n) · · · hp,N−1(n)]T,

hu (n)= [hu,0(n) hu,1(n) · · · hu,N−1(n)]T, (19a, b)

and y(n) is a vector of the latest N output samples,

y(n)= [ y(n) y(n−1) · · · y(n−N+1)]T. (20)

If one assumes that the coefficients of weight vector vary slowly, relative to the time scale
of the response of the system to be controlled, the pressure and velocity at the error sensor
become

pe (n)= po (n)+ hT
p (n)X(n)w(n), ue (n)= uo (n)+ hT

u (n)X(n)w(n), (21a, b)
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where X(n) is a N×L matrix of the input signals,

X(n)= [x(n) x(n−1) · · · x(n−N+1)]T. (22)

If one replaces the auxiliary plants hp (n) and hu (n) with the appropriate estimates h
 p (n)
and h
 u (n), then equations (21a) and (21b) can be written as

pe (n)= po (n)+wT(n)rp (n), ue (n)= uo (n)+wT(n)ru (n), (23a, b)

where rp (n) and ru (n) are the filtered-x signal vectors rp (n) and ru (n),

rp (n)=XT(n)h
 p (n), ru (n)=XT(n)h
 u (n), (24a, b)

The mean active intensity at the error sensor (Ia ), that is, the cost function to be
minimized, is given by

J= Ia =E[ pe (n)ue (n)]=Rpeue (t=0), (25)

where Rpeue (t) is the cross-correlation function between the pressure and velocity. It is
noteworthy that the present cost function is the product of the two different physical
quantities, pressure and velocity. Therefore, it is not possible simply to apply the
(filtered-x) LMS adaptive algorithm [10], which is useful when a cost function is squared
error or sum of squared errors. The active intensity expressed in the form of
cross-correlation can be rewritten by the cross-spectral density function (Speue (v)),

Rpeue (t=0)=g
a

−a

Speue (v) dv=g
a

0

2 Re [Speue (v)] dv, (26)

since the real part of the cross-spectral density function is even symmetric and the
imaginary part is odd symmetric. From equations (9a), (11a) and (26), one can deduce that
the mean active sound intensity at the downstream error sensor of duct is non-negative,
Rpeue (0)e 0, since all the frequency contents of the active intensity are non-negative,
2 Re [Speue (v)]e 0, under the physical termination condition =Rt =E 1.

To proceed with the derivation of the adaptive filtering algorithm, one can first examine
the dependence of the cost function J on the tap-weight vector w. For convenience,
consider J= {E[ pe (n)ue (n)]+E[ue (n)pe (n)]}/2. Using equations (23a) and (23b), one has

J= 1
2E[2po (n)uo (n)+2wTru (n)po (n)+2wTrp (n)uo (n)+wTrp (n)rT

u (n)w+wTru (n)rT
p (n)w]

=E[ po (n)uo (n)]+wTE[ru (n)po (n)]+wTE[rp (n)uo (n)]

+ 1
2wTE[rp (n)rT

u (n)]w+ 1
2wTE[ru (n)rT

p (n)]w

=Cpouo +wTprupo +wTprpuo + 1
2wTRrpruw+ 1

2wTRrurpw

=Cpouo +wTprupo +wTprpuo + 1
2wT(Rrpru +Rrurp )w, (27)

where Cpouo =E[ po (n)uo (n)] is the covariance between po (n) and uo (n), prupo =E[ru (n)po (n)]
is the cross-correlation vector between the filtered-x vector ru (n) and po (n),
prpuo =E[rp (n)uo (n)] is the cross-correlation vector between the filtered-x vector rp (n) and
uo (n), and Rrpru =E[rp (n)rT

u (n)] and Rrurp =E[ru (n)rT
p (n)] are the cross-correlation matrices

between the filtered-x vectors rp (n) and ru (n) respectively. The sum of the cross-correlation
matrices (Rrpru +Rrurp ) is non-negative, wT(Rrpru +Rrurp )we 0, since the cost function is
always non-negative for any weight vector w as previously stated (Je 0). This equation,
therefore, essentially shows that the present cost function (mean active intensity in the
downstream part of the duct) is a positive quadratic function of the tap-weight vector
which has a unique optimum.
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The gradient of the cost function (9) can be expressed as

9= 1J/1w= prupo + prpuo +(Rrpru +Rrurp )w. (28)

The optimal weight vector to minimize the cost function can be obtained by setting 9=0:

w*=−(Rrpru +Rrurp )−1(prupo + prpuo ). (29)

At time n, the cost function J(n) with adjustable weight vector w(n) can be expressed as

J(n)=Cpouo +wT(n)prupo +wT(n)prpuo + 1
2wT(n)(Rrpru +Rrurp )w(n). (30)

If one applies the method of steepest descent, the updated value of the tap-weight vector
at time n+1 can be computed as

w(n+1)=w(n)− m9(n), (31)

where m is a positive constant, and 9(n) is the value of the gradient vector at time n.
Differentiation of J(n) in equation (30) by w(n) gives

9(n)=
1J(n)
1w(n)

= prupo + prpuo +(Rrpru +Rrurp )w(n). (32)

If it were possible to measure the true gradient vector 9(n) at each iteration, and if the
step-size parameter m is suitably chosen, then the tap-weight vector computed by the
steepest descent algorithm would indeed converge to the optimal Wiener solution. In
reality, however, exact measurements of the gradient vector are not possible, since this
requires prior knowledge of both the cross-correlation matrices Rrpru and Rrurp and the
cross-correlation vectors prupo and prpuo . Consequently, the gradient vector must be estimated
from the available data.

A realizable estimation method is to use a running time average instead of the ensemble
average associated with the derivative. That is, one first defines an unbiased estimate of
the cost function as a finite temporal average,

J
 (n)=
1
M

s
n+M−1

i= n

pe (i)ue (i), (33)

where M is an average step. The values assigned to this M-step record depend on the type
of data windowing employed: for example, a rectangular window. During this interval
nE iE n+M+1, the tap-weight vector is held constant. Therefore, the gradient vector
can be estimated by

9
 (n)=
1

1w(n) 6 1
M

s
n+M−1

i= n

pe (i)ue (i)7=
1
M

s
n+M−1

i= n

1{ pe (i)ue (i)}
1w(i)

=
1
M

s
n+M−1

i= n 6pe (i)
1ue (i)
1w(i)

+ ue (i)
1pe (i)
1w(i)7. (34)

Substitution of equations (23a) and (23b) into equation (34) gives

9
 (n)=
1
M

s
n+M−1

i= n

{ pe (i)ru (i)+ ue (i)rp (i)}. (35)



      603

Therefore, the tap-weight adaptation is given by

w(n)=w(n+1)= · · ·=w(n+M−1), (36a)

w(n+M)=w(n)− m9
 (n)=w(n)−
m

M
s

n+M−1

i= n

{ pe (i)ru (i)+ ue (i)rp (i)}

=w(n)− m' s
n+M−1

i= n

{ pe (i)ru (i)+ ue (i)rp (i)}, (36b)

where m' is a positive adaptation coefficient replacing the factor m/M.
This result is identical with the adaptive filtering algorithm for active absorbing power

control of the control source [11]. However, the above adaptive filtering procedure still
requires a lengthy averaging process at each iteration of which the averaging step (M) is
essentially involved with the period of the lowest frequency noise component of interest
and the sampling period. That is, the averaging step M times the sampling period should
be larger than, at least, the half period of the lowest frequency noise component of interest
(since the sound intensity has second harmonic frequency components of the pressure or
velocity signal) to achieve a reliable gradient estimation in the adaptive filtering.

An alternative approach is to use the gradient of the instantaneous pe (n)ue (n) (the
instantaneous sound intensity) to update each of the filter coefficients at every sample time,
which is similar to the basic idea of the well-known LMS algorithm [10]. In this case, the
gradient estimator can be obtained as

9
 (n)=
1{ pe (n)ue (n)}

1w(n)
= pe (n)

1ue (n)
1w(n)

+ ue (n)
1pe (n)
1w(n)

= pe (n)ru (n)+ ue (n)rp (n). (37)

Therefore the adaptive filtering law becomes

w(n+1)=w(n)− m{ pe (n)ru (n)+ ue (n)rp (n)}. (38)

As a limiting case, if one deals with an infinite duct without reflecting waves, then
ue (n)= pe (n)/rc and ru (n)= rp (n)/rc. In this case, the adaptive algorithm described by
equation (38) becomes the well-known filtered-x LMS algorithm [10] which is widely used
for local sound pressure control. However, in order to apply this method successfully to
the present problem; active control of active sound intensity in the partially reactive field
due to the open ended termination, it is essential to check if the weight vector will converge
to the true optimal solution for the active intensity control, at least in the mean, or not. This
convergence is checked and the adaptive algorithm is proved to be stable in the Appendix.

5. EXPERIMENT

To compare the active intensity control with the local sound pressure control, which can
be influenced by sensor position and performance degradation due to the poor
observability problem, as previously stated, real-time experiments were performed for the
reduction of radiating noise.

5.1.  -

A schematic diagram of the experimental system is shown in Figure 3. Experiments were
conducted with a 5 mm thick acrylic plastic circular duct of diameter D=0·13 m and
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length L=2·77 m. The cut-on frequency of the first higher order mode ( fc ) is 1·545 kHz.
A primary noise source at xp =0 m and a secondary source at xs =1 m were both 4 inch
diameter loudspeakers, and the primary excitation was normally driven to produce a duct
sound pressure level of 65–95 dB in the plane wave frequency range f=100–500 Hz.

Sound pressure and particle velocity signals which are necessary for active intensity
control were obtained by a sound intensity probe, Brüel and Kjaer (B&K) 3520 composed
of two calibrated and phase-matched pressure microphones, B&K 4181, 1/2 in, with a
spacing of 5 cm. The phase mismatch of the second microphone relative to the first
microphone was positive and less than 0·02° in the frequency range of interest. The analog
conversion from two pressure signals ( pA (t) and pB (t)) to pressure ( pe (t)) and velocity
(ue (t)) at the error sensor location was done by the well-known finite difference
approximation method [14] based on the Euler equation with a B&K sound intensity
analyzer type 4433.

The intensity error sensor was located on the duct central axis at xe =2·17 m
downstream of the secondary source. The reason why the error sensor was located on the
central axis of the cross-section of the duct was to avoid the near field effect of the
secondary source as soon as possible since the first higher order mode by the secondary
source is a circumferential mode of which the nodal line crosses the central point of the
duct cross-section. The error sensor location from the secondary source location along the
x-axis was selected based on the three-dimensional analysis result of the finite open ended
circular duct which has a circular source on the cylindrical wall [15], and the criteria
suggested by a previous study [16] which showed that the near field contribution due to
higher order modes can be neglected provided the distance between the secondary source
and error microphone is more than about four times the width of the duct and the
frequencies are below 0·9 times the cut-on frequency of the higher order mode. In this
experiment, xe − xs =1·17 mq 4×D=4×13 cm=52 cm, fc =0·9×1·545 kHz=
1·35 kHz.

Figure 3. A schematic diagram of the experimental set-up. Duct length L=2·77 m, diameter D=0·13 m,
primary source location xp =0 m, control source location xs =1·0 m, error sensor location xe =2·17 m, and for
outer field monitoring positions (A–F) xo =(L+1) m=3·77 m, Dyo =0·2 m.
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Radiated sound pressures from the duct exit were measured at six positions (A to F)
by a moving microphone (B&K 4165, 1/2 in) along the vertical line up to 45 degrees from
the horizontal axis, 1 m from the duct exit.

5.2.     

An active control experiment of sound pressure in the test duct was conducted by the
widely used time-domain filtered-x LMS adaptive algorithm [10]. By using the generator
signal as a reference input to the adaptive filter, the acoustic feedback problem, which is
an unstable factor when the microphone signal upstream is used as a reference input, was
eliminated in the experiment. The structure of the filtered-x LMS algorithm is well-known,
and therefore it will not be described in this paper.

For the active intensity control experiment for the test duct, the filtered-x LMP
algorithm described by equation (38) using the instantaneous intensity gradient estimate
was applied. The impulse responses of the auxiliary plants hp and hu were identified off-line,
prior to control optimization, with an LMS identification procedure.

Adaptive filtering algorithms to achieve sound pressure control and active intensity
control were implemented on a TMS320C30 digital signal processor with sampling
frequency 3 kHz.

5.3.  

Before conducting the active control experiments, the sound pressure distribution and
active sound intensity distribution in the test duct were measured, to obtain information
about the acoustic characteristics of the duct.

In Figures 4(a) and 4(b) are illustrated the spectral and spatial distribution of sound
pressure and active sound intensity before control, at 28 positions from x=0·07 m to
x=2·77 m (duct end) with incremental spacing Dx=0·1 m. From Figure 4(a), one can
see that the sound pressure distribution is strongly position-dependent. On the other hand,
in Figure 4(b) it is shown that the active sound intensity distribution is less space-dependent
than the sound pressure distribution. The measured active intensities for all frequencies
in the duct were positive as expected, even if it is not explicitly shown in Figure 4(b)
with the decibel scale. These two results correspond to the theoretical observations in
section 3.

In Figure 5 are shown the sound pressure, active sound intensity distributions in the
error sensor position xe =2·17 m and the sound pressure distribution at the outer field
position A (xo =3·77 m, yo =0 m). As previously stated, the error sensor location was
selected with consideration of the near field effect. Nevertheless, one can see that the third
resonance frequency component (276 Hz) is poorly observable by sound pressure
measurement. On the other hand, all the frequency components emitted out of the duct
exit are fully detected by the active sound intensity measurement. One can also see that
the active sound intensity distribution is almost proportional to the exterior sound pressure
distribution. This proportionality is essentially related to the termination condition of duct
as previously stated in section 3.

5.4. 

Two typical frequency components were investigated in detail. The first frequency
component is 276 Hz, which is the third resonance frequency in the frequency band
100–500 Hz. For this frequency component, the external sound field is poorly observable
by measurement of duct pressure; on the other hand, it is well observable by measurement
of active intensity, as shown in Figure 5. The second frequency component is the fourth
resonance frequency, 337 Hz. For this one, both the measurements of sound pressure and
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Figure 4. The spectral and spatial distribution of (a) the sound pressure and (b) the active sound intensity before
control, at 28 positions from x=0·17 m to x=2·77 m (duct end) with a measurement interval Dx=0·1 m in
the experimental test duct (see Figure 3).

active sound intensity have good observabilities. The adaptive filters for pressure control
and active intensity control were allowed to converge fully, and then the adaptive filters
were fixed while the measurements were made along the duct length.

In Figures 6(a) and 6(b) are shown the sound pressure level and sound intensity level
in the duct for the first frequency component (276 Hz) respectively, before and after sound
pressure control and active intensity control. For this frequency, one can see that the active
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Figure 5. The spectral distribution of the sound pressure ( · · · · ) and the active sound intensity ( ) at the
error sensor position (xe ) in the test duct (see Figure 3) before control, and the sound pressure distribution (––)
emitted out of the duct end at the outer monitoring position A (xo =3·77 m, yo =0 m) before control.

control of sound pressure which has poor observability gives little reductions in both sound
pressure level and sound intensity level downstream. On the other hand, the active intensity
control which has good observability gives much better control results than the sound
pressure control. In Figures 7(a) and 7(b) are shown the sound pressure level and sound
intensity level in the duct respectively, for the second frequency component (337 Hz). For
this frequency component, which is well observable by both measurement of sound
pressure and sound intensity, one can see that the two control methods give similar large
reduction results, as expected.

Since the ultimate purpose of the active control in this work is exterior field control,
sound pressure levels were measured at six positions (A–F in Figure 3) in the exterior field
of the open ended test duct, to assess the control performances. The results are shown in
Table 1. For the first frequency component (276 Hz), the attenuation of the sum of the
sound pressure levels at the outer six positions is far larger with sound intensity control

Figure 6. Spatial change of (a) the sound pressure level and (b) the active sound intensity level in the
experimental test duct (see Figure 3) for the third resonance frequency (276 Hz) in the frequency band
100–500 Hz, before and after the sound pressure control and active intensity control. ——Q , Before control; ——w ,
pressure control; ——W , active intensity control.
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Figure 7. Spatial change of (a) the sound pressure level and (b) the active sound intensity level in the
experimental test duct (see Figure 3) for the fourth resonance frequency (337 Hz) in the frequency band
100–500 Hz, before and after the sound pressure control and active intensity control. Key as Figure 6.

than with sound pressure control. One can also see that the attenuation levels with pressure
control and intensity control are similar for the second frequency component (337 Hz).
However, the sound intensity control gives a little more attenuation level than the sound
pressure control in this case too.

6. CONCLUDING REMARKS

In this paper, an active intensity control strategy has been proposed to control the
radiated noise out of a duct, based on a theoretical analysis as well as experimental
investigation.

One of the features of the active intensity control strategy is that the control performance
is maintained regardless of the sensor location, unlike with the conventional local pressure
control method, at an interior downstream or exterior field position. This is because the
active intensity distribution at the downstream is not space-dependent if it is plane wave.
On the other hand, the sound pressure distributions at interior and exterior field points
are acoustically space-dependent: that is, one has standing wave patterns and directivity
patterns. It also turned out that the theoretical optimal filter for the active intensity control
takes on a form of causal transversal filter, which does not demand knowledge of the
non-causal part nor does it not depend on the downstream termination condition. That
is, provided that the number of digital filter coefficients is large enough to model the
main acoustic plant, one can expect nearly complete cancellation of the radiated duct
noise.

T 1

Sum of the sound pressure levels at six positions (A–F) in the exterior field of open ended
test duct (Figure 3) before and after pressure control and active intensity control

Investigated Sum of SPL values Sum of SPL values Sum of SPL values
frequency before control after pressure control after intensity control

(Hz) (dB) (attenuation) (dB) (attenuation) (dB)

276 70·5 67·1 (3·4) 48·8 (21·7)
337 65·3 43·1 (22·2) 40·4 (24·9)
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From a practical signal processing viewpoint, it was suggested and proved that the
digital filtering for the active intensity control can be achieved by the time-domain
filtered-x LMP (least-mean-product) adaptive algorithm with instantaneous sound
intensity, which is far simpler than the time-domain algorithm using finite temporal
averaged intensity or frequency-domain algorithm using the active parts of the sound
intensity in finite Fourier transformed domain.

Experiments with an open ended duct were performed to compare the active intensity
control performance with that of sound pressure control. The former control
implementation used the suggested filtered-x LMP algorithm and the latter the filtered-x
LMS algorithm. From the experimental results, it was shown that the exterior sound field
was much more observable when sensing the active intensity in the duct than just sound
pressure. It was also concluded that the active intensity control performances are superior
to the sound pressure control ones.

In practical implementation, the present active intensity control system implicity requires
a sound intensity detector. If a two-microphone method is used, closely spaced two
microphones such as the commercially available intensity probe can be used. In general,
the two microphone technique for the measurement of sound intensity is subject to errors
which arise from finite difference approximations which are inherent in the transduction
principle employed, and from imperfections of the measurement systems. These errors are
also functions of the type of acoustic field under investigation. Therefore, the measurement
accuracy of active sound intensity in the open end duct system which has a partially
reactive sound field, would be position-dependent. However, some errors in the estimate
of active sound intensity level, that is, overestimation or underestimation of active sound
intensity level, can be tolerated, since one is interested in controlling the magnitude of active
sound intensity rather than in mapping the sound field. The most important error from
the viewpoint of active control is the sign reversal problem which can occur due to channel
phase mismatch of the measurement system. That is, if the sign of the estimated active
sound intensity (due to the control source alone) is negative in the duct downstream due
to the phase mismatch error, the present active control strategy would fail, since the shape
of the error performance function in equation (30) becomes negative quadratic:
wT(Rrpru +Rrurp )wQ 0. In a standing wave field with standing wave ratio R, the sign reversal
can occur when the phase mismatch of the second microphone relative to the first one is
negative and the magnitude of the phase mismatch is larger than kDr/R where Dr is the
separation distance [17]. (On the other hand, if the phase mismatch has a positive value,
then the sign reversal does not happen even if the intensity level is overestimated or
underestimated.) For example, if the standing wave ratio is 13 dB, the magnitude of the
reflection coefficient is 0·9, the minimum frequency of interest is 200 Hz, and the separation
distance is 5 cm, then the magnitude of the negative phase mismatch should be at least
less than 0·5°, to ensure a correct sign. Therefore it is necessary to use well phase-matched
microphones, and to check the sign of the active intensity before control in the frequency
band of interest.
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APPENDIX: CONVERGENCE OF FILTERED-x LEAST-MEAN-PRODUCT
ALGORITHM

Taking the expected value of both sides of equation (38) yields the difference equation

E[w(n+1)]=E[w(n)]− mE[ pe (n)ru (n)+ ue (n)rp (n)]. (A1)

Substituting equations (23a) and (23b) into equation (A1) gives

E[w(n+1)]=E[w(n)]− mE[{po (n)+wT(n)rp (n)}ru (n)+ {uo (n)+wT(n)ru (n)}rp (n)]

=E[w(n)]− m{E[po (n)ru (n)]+E[wT(n)rp (n)ru (n)]+E[uo (n)rp (n)]

+E[wT(n)ru (n)rp (n)]}. (A2)

From equation (38), one can see that the weight vector w(n) is a function only of the past
filtered input vectors rp (n−1), rp (n−2), . . . , rp (0) and ru (n−1), ru (n−2), . . . , ru (0). If
one assumes that successive input vectors x(n−1), x(n−2), . . . , x(0) are independent as
time goes on, then w(n) is independent of rp (n) and ru (n) since the successive filtered input
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vectors are also independent respectively. Also, from equation (29) one has the optimum
weight vector given as w*=−(Rrpru +Rrurp )−1(prupo + prpuo ). Thus, equation (A2) becomes

E[w(n+1)]=E[w(n)]− m{E[ru (n)po (n)]+E[ru (n)rT
p (n)]E[w(n)]+E[rp (n)uo (n)]

+E[rp (n)rT
u (n)]E[w(n)]}

=E[w(n)]− m{prupo +RrurpE[w(n)]+ prpuo +RrpruE[w(n)]}

=E[w(n)]− m{prupo + prpuo +(Rrpru +Rrurp )E[w(n)]}

=E[w(n)]− m{−(Rrpru +Rrurp )w*+ (Rrpru +Rrurp )E[w(n)]}. (A3)

Upon subtracting the optimum weight w* from both sides of equation (A3), and using the
weight-error vector o(n)=w(n)−w*, equation (A3) becomes

E[o(n+1)]= {I− m(Rrpru +Rrurp )}E[o(n)], (A4)

where the matrix (Rrpru +Rrurp ) is symmetric, since

(Rrpru +Rrurp )T =E[{rp (n)rT
u (n)+ ru (n)rT

p (n)}T]

=E[{ru (n)rT
p (n)+ rp (n)rT

u (n)}]=Rrurp +Rrpru . (A5)

By using the unitary similarity transformation for a symmetric matrix, the
cross-correlation matrix (Rrpru +Rrurp ) can be diagonalized as

Rrpru +Rrurp =QLQT. (A6)

The unitary matrix Q has as its columns an orthogonal set of eigenvectors associated with
the eigenvalues of the matrix (Rrpru +Rrurp ). The matrix L is a diagonal matrix and has as
its diagonal elements the eigenvalues l1, l2, . . . , lL . These eigenvalues are all non-negative
and real, since the matrix (Rrpru +Rrurp ) is non-negative and symmetric.

Substituting equation (A6) in equation (A4), pre-multiplying both sides by QT and using
the property of the unitary matrix, QT =Q−1, one obtains

E[QTo(n+1)]= {I− mL}E[QTo(n)]. (A7)

Upon defining an uncoupled principal co-ordinate vector as n(n)=QTo(n), the solution
of equation (A7) becomes

E[n(n)]= {I− mL}nn(0), (A8)

where n(0) is the initial weight vector in the principal-axis system. Therefore, one can
deduce that the mean of n(n) converges to zero as n approaches infinity, provided that the
condition

0Q mQ 2/lmax (A9)

is satisfied, where lmax is the largest eigenvalue of the cross-correlation matrix (Rrpru +Rrurp ).
One can observe that this result is very similar to the convergence condition of the LMS

algorithm [10]. In particular, the cross-correlation matrix (Rrpru +Rrurp ) between the
filtered-input particle velocity signal and the sound pressure signal has a role identical to
that of the auto-correlation matrix of the input signal of the LMS algorithm. In other
words, provided that the step-size parameter m is set within the bounds defined by equation
(A9), the mean of the tap-weight vector w(n) computed by using the filtered-x LMP
(least-mean-product) algorithm described by equation (38) converges to the optimum
Wiener solution w* as the number of iterations approaches infinity.


